Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 687
Filtrar
1.
Foods ; 13(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611301

RESUMO

The objective of our study was to analyze and identify enzymatic peptides from straw mushrooms that can enhance salty taste with the aim of developing saltiness enhancement peptides to reduce salt intake and promote dietary health. We isolated taste-related peptides from the straw mushroom extract using ultrafiltration and identified them using UPLC-Q-TOF-MS/MS. The study found that the ultrafiltration fraction (500-2000 Da) of straw mushroom peptides had a saltiness enhancement effect, as revealed via subsequent E-tongue and sensory analyses. The ultrafiltration fractions (500-2000 Da) were found to contain 220 peptides, which were identified through UPLC-Q-TOF-MS/MS analysis. The interaction of these peptides with the T1R1/T1R3 receptor was also assessed. The investigation highlighted the significant involvement of Asp223, Gln243, Leu232, Asp251, and Pro254 in binding peptides from triple-enzymatically hydrolyzed straw mushrooms to T1R1/T1R3. Based on the binding energy and active site analysis, three peptides were selected for synthesis: DFNALPFK (-9.2 kcal/mol), YNEDNGIVK (-8.8 kcal/mol), and VPGGQEIKDR (-8.9 kcal/mol). Importantly, 3.2 mmol of VPGGQEIKDR increased the saltiness level of a 0.05% NaCl solution to that of a 0.15% NaCl solution. Additionally, the addition of 0.8 mmol of YNEDNGIVK to a 0.05% NaCl solution resulted in the same level of saltiness as a 0.1% NaCl solution.

2.
J Agric Food Chem ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652024

RESUMO

Amadori rearrangement products (ARPs) are gaining more attention for their potential usage in the food flavor industry. Peptide-ARPs have been studied, but pyrazinones that were theoretically found in the Maillard reaction (MR) have not been reported to be formed from small peptide-ARPs. This study found four pyrazinones: 1-methyl-, 1,5-dimethyl-, 1,6-dimethyl-, and 1,5,6-trimethyl-2(1H)-pyrazinones in both MR and ARP systems. It was the first time 1-methyl-2(1H)-pyrazinone was reported, along with 1,5-dimethyl- and 1,5,6-trimethyl-2(1H)-pyrazinones being purified and analyzed by nuclear magnetic resonance for the first time. The primary formation routes of the pyrazinones were also proven as the reaction between diglycine and α-dicarbonyls, including glyoxal, methylglyoxal, and diacetyl. The pyrazinones, especially 1,5-dimethyl-2(1H)-pyrazinone, have strong fluorescence intensity, which may be the reason for the increase of fluorescence intensity in MR besides α-dicarbonyls. Cytotoxicity analysis showed that both Gly-/Digly-/Trigly-ARP and the three pyrazinones [1-methyl-, 1,5-dimethyl-, and 1,5,6-trimethyl-2(1H)-pyrazinones] showed no prominent cytotoxicity in the HepG2 cell line below 100 µg/mL, further suggesting that ARPs or pyrazinones could be used as flavor additives in the future. Further research should be conducted to investigate pyrazinones in various systems, especially the peptide-ARPs, which are ubiquitous in real food systems.

3.
Biomed Chromatogr ; : e5861, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501361

RESUMO

Fraxinus mandshurica (Oleaceae) is used as a traditional medicinal plant for the treatment of red eyes, menstrual disorders, excessive leucorrhea, chronic bronchitis and psoriasis. To perform chemical characterization of the secondary metabolites of F. mandshurica roots, bark, stems and leaves, 32 samples were collected from eight provinces in this study. A total of 64 chemical components were detected from four different parts of F. mandshurica by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Meanwhile, a total of nine secoiridoids were obtained by natural product chemical extraction, isolation and identification methods. Quantitative analysis by high-performance liquid chromatography-diode array detection-mass spectrometry showed the highest total content of secoiridoids in the bark, which is also consistent with the traditional medicinal parts. The results of methodological validation showed that the correlation coefficient (R2 ) values were all >0.9993, indicating a good linear range of the standard curve, while the relative standard deviations of precision, reproducibility and stability were <3%, and the spiked recoveries ranged from 98.22 to 102.27%, indicating that the experimental method was reliable and stable. In addition, fingerprinting and a heatmap were established to demonstrate the content trends of F. mandshurica more visually from different origins. Multivariate analysis, including principal component analysis and partial least squares discriminant analysis, was performed to determine the chemical characteristics of different parts of F. mandshurica, and six characteristic secoiridoids that could be used to distinguish different origins were screened. Finally, the inhibition of tyrosinase, α-glucosidase, acetylcholinesterase and pancreatic lipase activities by the nine characteristic compounds and extracts from different parts were investigated, and the results showed that they all exhibited different degrees of enzyme activity inhibition and thus have potential applications in whitening and blemish removal, hypoglycemia, anti-Alzheimer's disease and anti-obesity as a new source of natural enzyme activity inhibitors. This study establishes an identification and evaluation method applicable to phytochemistry of different origins, which is a guideline for quality control, origin evaluation and clinical application of traditional medicinal plants. This is also an unprecedented study on the identification of the chemical composition of different parts of F. mandshurica, characteristic compounds and the inhibition of enzyme activity of extracts from different parts.

4.
J Agric Food Chem ; 72(12): 6554-6564, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38498924

RESUMO

Dihydromyricetin (DMY) was employed to reduce the yield of furfural derived from the Amadori rearrangement product of l-threonine and d-xylose (Thr-ARP) by trapping Thr-ARP, 3-deoxyxyosone (3-DX), and furfural to form adducts. The effect of different concentrations of DMY at different pH values and temperatures on the reduction of furfural production was studied, and the results showed that DMY could significantly reduce furfural production at higher pH (pH 5-7) and lower temperature (110 °C). Through the surface electrostatic potential analysis by Gaussian, a significant enhancement of the C6 nucleophilic ability at higher pH (pH ≥ 5) was observed on DMY with hydrogen-dissociated phenol hydroxyl. The nucleophilic ability of DMY led to its trapping of Thr-ARP, 3-DX, and furfural with the generation of the adducts DMY-Thr-ARP, DMY-3-DX, and DMY-furfural. The formation of the DMY-Thr-ARP adduct slowed the degradation of Thr-ARP, caused the decrease of the 3-DX yield, and thereby inhibited the conversion of 3-DX to furfural. Therefore, DMY-Thr-ARP was purified, and the structure was identified by nuclear magnetic resonance (NMR). The results confirmed that C6 or C8 of DMY and carbonyl carbon in Thr-ARP underwent a nucleophilic addition reaction to form the DMY-Thr-ARP adduct. In combination with the analysis results of Gaussian, most of the DMY-Thr-ARP adducts were calculated to be C6-DMY-Thr-ARP. Furthermore, the formation of DMY-furfural caused furfural consumption. The formation of the adducts also shunted the pathway of both Thr-ARP and 3-DX conversion to furfural, resulting in a decrease in the level of furfural production.


Assuntos
Furaldeído , Xilose , Xilose/química , Temperatura , Flavonóis/química
5.
J Pharm Biomed Anal ; 244: 116105, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38552420

RESUMO

BACKGROUND: Actinidia arguta leaves (AAL) are traditionally consumed as a vegetable and as tea in folk China and Korea. Previous studies have reported the anti-diabetic effect of AAL, but its bioactive components and mechanism of action are still unclear. AIM OF THE STUDY: This study aims to identify the hypoglycemic active components of AAL by combining serum pharmacochemistry and network pharmacology and to elucidate its possible mechanism of action. METHODS: Firstly, the effective components in mice serum samples were characterized by UPLC-Q/TOF-MSE. Furthermore, based on these active ingredients, network pharmacology analysis was performed to establish an "H-C-T-P-D" interaction network and reveal possible biological mechanisms. Finally, the affinity between serum AAL components and the main proteins in the important pathways above was investigated through molecular docking analysis. RESULTS: Serum pharmacochemistry analysis showed that 69 compounds in the serum samples were identified, including 23 prototypes and 46 metabolites. The metabolic reactions mainly included deglycosylation, dehydration, hydrogenation, methylation, acetylation, glucuronidation, and sulfation. Network pharmacology analysis showed that the key components quercetin, pinoresinol diglucoside, and 5-O-trans-p-coumaroyl quinic acid butyl ester mainly acted on the core targets PTGS2, HRAS, RELA, PRKCA, and BCL2 targets and through the PI3K-Akt signaling pathway, endocrine resistance, and MAPK signaling pathway to exert a hypoglycemic effect. Likewise, molecular docking results showed that the three potential active ingredients had good binding effects on the five key targets. CONCLUSION: This study provides a basis for elucidating the pharmacodynamic substance basis of AA against T2DM and further exploring the mechanism of action.

6.
J Agric Food Chem ; 72(14): 8081-8091, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38535975

RESUMO

Culinary sage, Salvia officinalis L., is a popular spice plant commonly used throughout the world. In this study, 35 odorants were identified in dried sage via solvent-assisted flavor evaporation (SAFE) and aroma extract dilution analysis (AEDA), including 9 that were identified in sage for the first time. Fifteen odorants were quantitated by stable isotope dilution analysis (SIDA), and their odor activity values (OAVs) were determined. Odorants with high OAVs included (2E,6Z)-nona-2,6-dienal, 1,8-cineole, and ß-myrcene. A formulated aroma simulation model closely matched the aroma profile of an aqueous infusion of dried sage. Enantiomeric proportions of selected odorants were determined by chiral gas chromatography. Furthermore, 6 different sage cultivars were grown in the greenhouse, dried under the same conditions, and analyzed. Sensory analysis determined that all cultivars were dominated by an herbaceous sensory attribute and had varying intensities of eucalyptus, mint, clove, pine, green, earthy, floral, and citrus notes. Cultivars with varying intensities of herbaceous, eucalyptus, pine, and green sensory notes correlated with the OAVs of α-thujone/ß-thujone, 1,8-cineole, α-pinene, and (2E,6Z)-nona-2,6-dienal, respectively. This study identified the odorants driving the sensory profiles of different sage cultivars and serves as a foundation for future studies on the aroma chemistry of culinary sage.


Assuntos
Salvia officinalis , Compostos Orgânicos Voláteis , Odorantes/análise , Eucaliptol/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Gasosa , Compostos Orgânicos Voláteis/química , Aromatizantes/química , Olfatometria
7.
J Agric Food Chem ; 72(13): 7344-7353, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502793

RESUMO

Amadori rearrangement products of asparagine with glucose (Asn-Glc-ARP) were first prepared through Maillard model reactions and identified via liquid chromatography-mass spectroscopy. With the study on the effect of the reaction temperature, pH values, and reaction time, the ideal reaction condition for accumulation of Asn-Glc-ARP was determined at 100 °C for 40 min under pH 7. Asparagine (Asn) was prone to degrade from Asn-Glc-ARP in alkaline pH values within a lower temperature range, while in an acidic environment with high temperatures, deamidation of Asn-Glc-ARP to Asp-Glc-ARP (Amadori rearrangement products of aspartic acid with glucose) was displayed as the dominant pathway. The deamidation reaction on the side chain of the amide group took place at Asn-Glc-ARP and transferred it into the hydroxyl group, forming Asp-Glc-ARP at the end. Considering that lyophilization as pretreatment led to limited water activity, a single aspartic acid was not deamidated from Asn directly nor did it degrade from Asp-Glc-ARP even at 120 °C. The degradation of Asn-Glc-ARP through tandem mass spectrometry (MS/MS) analysis showed the obvious fragment ion at m/z 211, indicating that the stable oxonium ion formed during fragmentation. The structure of Asn-Glc-ARP was proposed as 1-deoxy-1-l-asparagino-d-fructose after separation and purification. Also, the content of Asn-Glc-ARP within dry jujube fruit (HeTianYuZao) was quantitated as high as 8.1 ± 0.5 mg/g.


Assuntos
Asparagina , Glucose , Extratos Vegetais , Ziziphus , Asparagina/química , Glucose/química , Espectrometria de Massas em Tandem , Reação de Maillard , Ácido Aspártico
8.
Food Res Int ; 181: 114075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448093

RESUMO

Directional and rapid formation of the Amadori rearrangement product (ARP) from the glutamic acid and xylose was achieved through intermittent microwave heating. The yield of ARP reached 58.09 % by subjecting the system to intermittent microwave heating at a power density of 10 W/g for 14 min. Dehydration rate and microwave effects were found to be key factors to optimize the conditions for directional and rapid preparation of the ARP. Through a comprehensive analysis of the ARP degradation and further browning under both conductive and microwave thermal processing, it was observed that microwave processing significantly accelerated the browning degree of systems, leading to a tenfold reduction in the heating time required for browning. This research presented a promising avenue for the development of novel and expedited methods for the production of ARP and highlighted the potential of ARP in enhancing color quality in fast-cooking applications utilizing microwave.


Assuntos
Ácido Glutâmico , Calefação , Micro-Ondas , Xilose , Culinária
9.
Food Res Int ; 181: 114116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448100

RESUMO

Cantonese soy sauce (CSS) is an important Chinese condiment due to its distinctive flavor. Microorganisms play a significant role in the flavor formation of CSS during fermentation. However, the correlation between microbes and flavor compounds as well as the potential fermentation mechanism remained poorly uncovered. Here we revealed the dynamic changes of microbial structure and characteristics metabolites as well as their correlation of CSS during the fermentation process. Metagenomics sequencing analysis showed that Tetragenococcus halophilus, Weissella confusa, Weissella paramesenteroides, Aspergillus oryzae, Lactiplantibacillus plantarum, Weissella cibaria were top six dominant species from day 0 to day 120. Sixty compounds were either positively or tentatively identified through untargeted metabolomics profile and they were 27 peptides, amino acids and derivatives, 8 carbohydrates and conjugates, 14 organic acids and derivatives, 5 amide compounds, 3 flavonoids and 3 nucleosides. Spearman correlation coefficient indicated that Tetragenococcus halophilus, Zygosaccharomyces rouxii, Pediococcus pentosaceus and Aspergillus oryzae were significantly related with the formation of taste amino acids and derivatives, peptides and functional substances. Additionally, the metabolisms of flavor amino acids including 13 main free amino acids were also profiled. These results provided valuable information for the production practice in the soy sauce industry.


Assuntos
Aspergillus oryzae , Enterococcaceae , Alimentos de Soja , Fermentação , Aminoácidos , Aspergillus oryzae/genética , Peptídeos
10.
J Agric Food Chem ; 72(11): 5878-5886, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38462902

RESUMO

The involvement of exogenous alanine was observed to inhibit the generation of 2-furfural during the thermal degradation of the Amadori rearrangement product (ARP). To clarify the reason for the reduced yield of 2-furfural triggered by exogenous alanine, the evolution of the precursors of 2-furfural formed in the ARP model and ARP-alanine model was investigated, and a model including ARP and 15N-labeled alanine was used to differentiate the role of endogenous and exogenous alanine in the degradation of ARP. It was found that the condensation between ARP and 3-deoxyxylosone could occur during thermal treatment. Nevertheless, the interaction of ARP with 3-deoxyxylosone exhibited an accelerated pace in the presence of exogenous alanine. In this way, exogenous alanine blocked the recovery of endogenous alanine while simultaneously enhancing the consumption of ARP and 3-deoxyxylosone during the Maillard reaction. Hence, the yield of 2-furfural was diminished with the interference of exogenous alanine. Furthermore, the promotion of the reaction between ARP and deoxyxylosone induced by exogenous alanine blocked their retro-aldolization reaction to short-chain α-dicarbonyls (α-DCs) and consequently resulted in a lack of pyrazine formation during the ARP degradation. The present study provided a feasible method for the controlled formation of 2-furfural during the thermal treatment of ARP derived from alanine.


Assuntos
Alanina , Furaldeído , Reação de Maillard
11.
Food Chem ; 446: 138827, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402772

RESUMO

As the final processing step, drying temperature between 90 and 140 â„ƒ is usually applied to terminate enzymatic activities and improve sensory characteristics of black tea. Liquid chromatography tandem mass spectrometry (LC-MS) based non-targeted and targeted metabolomics analyses combined in vitro biological assays were adopted to investigate the chemical and biological variations after drying. Fifty-nine differentially expressed metabolites including several hydroxycinnamic acid derivatives and pyroglutamic acid-glucose Amadori rearrangement products (ARPs) were identified, the latter of which was correspondingly accumulated with increasing temperature. The levels of theaflavins (TFs), thearubigins (TRs), monosaccharides and free amino acids gradually decreased with increasing temperature. Furthermore, the bioassays of black tea showed that drying under 110 â„ƒ provided the highest antioxidant capacities, but the inhibitory effects on α-glucosidase and α-amylase were decreasing along with increasing drying temperature. These results are valuable for optimizing drying process to obtain superior sensory properties and preserve bioactivities of black tea.


Assuntos
Camellia sinensis , Chá , Chá/química , Polifenóis/análise , Temperatura , Camellia sinensis/química , Cromatografia Líquida , Antioxidantes/análise
12.
Fitoterapia ; 174: 105865, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382892

RESUMO

The bark of Fraxinus mandshurica is a traditional folk herb used to clear heat and dry dampness. To investigate the differences in coumarins content in the bark of F. mandshurica, 24 batches of samples from four origins were collected and analyzed. Eight coumarins were obtained by traditional natural product extraction, isolation and identification techniques and quantified by high performance liquid chromatography-photodiode array (HPLC-DAD). The quantitative results showed that the overall content of compound 30 (Fraxinol) was higher at 100.23 mg/g, while the overall content of compound 23 (Cichoriin) was lower, which may be related to environmental factors in different regions. The method validation showed that the linear range of the eight standards was between 10 and 2500 µg/mL with correlation coefficient (R2) values >0.9991; the relative standard deviation (RSD, %) values of intra-day precision were between 0.35 and 1.38, while the RSD values of inter-day precision were between 0. 29-1.78; the RSD (%) values for the reproducibility experiments ranged from 0.29 to 1.87, while the RSD (%) values for the stability experiments ranged from 0.22 to 2.33; the spiked recovery of the samples ranged from 98.65 to 101.34%, and the RSD (%) values ranged from 0.22 to 1.96. The method validation results showed that the instrument used for the analysis had good precision, the reproducibility and stability of the samples were good, and the accuracy of the experimental method was high. In addition, a total of 54 chemical components were identified from F. mandshurica bark by ultra performance liquid chromatography-electrospray quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS). Based on this, fingerprinting, heatmap and multivariate analysis, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), were established for 24 batches of samples, and four marker compounds that could be used to distinguish different origins of F. mandshurica were screened. To further investigate the bioactivities of the eight coumarins, in vitro enzyme activity inhibition studies were performed, and the results showed that they all exhibited different degrees of inhibition of acetylcholinesterase, tyrosinase and α-glucosidase, thus having potential applications in the treatment of Alzheimer's disease, blemish whitening and anti-diabetes, and becoming a new source of natural enzyme activity inhibitors. This study established an identification and evaluation method applicable to plants of different origins, which provides a strong reference for quality control, origin evaluation and clinical application of traditional medicinal plants.


Assuntos
Fraxinus , Cumarínicos/análise , Reprodutibilidade dos Testes , Acetilcolinesterase , Casca de Planta/química , Estrutura Molecular , Análise Multivariada , Cromatografia Líquida de Alta Pressão/métodos
13.
J Agric Food Chem ; 72(6): 2853-2878, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300835

RESUMO

Plant-derived extracellular vesicles (PDEVs) have recently emerged as a promising area of research due to their potential health benefits and biomedical applications. Produced by various plant species, these EVs contain diverse bioactive molecules, including proteins, lipids, and nucleic acids. Increasing in vitro and in vivo studies have shown that PDEVs have inherent pharmacological activities that affect cellular processes, exerting anti-inflammatory, antioxidant, and anticancer activities, which can potentially contribute to disease therapy and improve human health. Additionally, PDEVs have shown potential as efficient and biocompatible drug delivery vehicles in treating various diseases. However, while PDEVs serve as a potential rising star in modern healthy diets and biomedical applications, further research is needed to address their underlying knowledge gaps, especially the lack of standardized protocols for their isolation, identification, and large-scale production. Furthermore, the safety and efficacy of PDEVs in clinical applications must be thoroughly evaluated. In this review, we concisely discuss current knowledge in the PDEV field, including their characteristics, biomedical applications, and isolation methods, to provide an overview of the current state of PDEV research. Finally, we discuss the challenges regarding the current and prospective issues for PDEVs. This review is expected to provide new insights into healthy diets and biomedical applications of vegetables and fruits, inspiring new advances in natural food-based science and technology.


Assuntos
Dieta Saudável , Vesículas Extracelulares , Humanos , Estudos Prospectivos , Verduras , Antioxidantes
14.
Food Funct ; 15(5): 2381-2405, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38376230

RESUMO

Hyperglycemia has become a global health problem due to changes in diet and lifestyle. Most importantly, persistent hyperglycemia can eventually develop into type II diabetes. While the usage of current drugs is limited by their side effects, stilbenes derived from fruits and herbal/dietary plants are considered as important phytochemicals with potential hypoglycemic properties. Herein, the most common stilbenoids in consumed foods, i.e. resveratrol, pterostilbene, piceatannol, oxyresveratrol, and 2,3,5,4'-tetrahydroxystilbene-2-O-ß-glucopyranoside (THSG), are reviewed in this paper. These stilbenes are found to regulate glucose homeostasis via (a) modulation of feeding behaviour and nutrition absorption; (b) restoration of insulin signalling by enhancing insulin production/insulin sensitivity; (c) improvement of gut permeability, gut microbial profile and resulting metabolomes; and (d) amelioration of circadian rhythm disruption. In this review, we have summarized the underlying mechanisms for the hypoglycemic effects of the five most common dietary stilbenoids listed above, providing a comprehensive framework for future study and applications.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Insulinas , Estilbenos , Humanos , Hipoglicemiantes/farmacologia , Resveratrol/farmacologia , Dieta , Estilbenos/farmacologia , Estilbenos/química
15.
Food Chem ; 442: 138390, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241995

RESUMO

Aging is an important processing step of producing high quality apple brandy. In this study, apple brandies aged by traditional method and using three different toasted oak chips combined with or without ultra-high-pressure (UHP) treatment were prepared to compare their differences in chemical characterization and sensory properties. The results indicated that the brandies aged with toasted oak chip increased the levels of total acidity, volatile acidity and phenolic compounds. It also had the desirable color and taste. The brandy aged with toasted oak chip combined with UHP reached the highest levels of total acidity (1.06 g/L), total phenolic content (284.92 mg/L) and aromatic esters (49.37 %). Therefore, the aging with high toasted oak chip combined with UHP treatment could cut the traditional aging time to meet the same quality as traditional aging method. The results are very useful to develop a fast and efficient aging technique for brandy production.


Assuntos
Malus , Quercus , Vinho , Malus/química , Vinho/análise , Quercus/química , Madeira/química , Bebidas Alcoólicas/análise , Fenóis/análise
16.
Mol Nutr Food Res ; 68(1): e2300108, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37876143

RESUMO

SCOPE: Ovarian clear cell carcinoma (OCCC) is a subtype of epithelial ovarian cancer (EOC) that is associated with higher interleukin-6 (IL-6) levels, and suppression of the Janus kinase 2/Signal transducer and activator of transription 3 (JAK2/STAT3) pathway may contribute to the suppression of this cancer. This study aims to compare the anti-cancer effect of pterostilbene (PSB) and 2'- and 3'-hydroxypterostilbene (2HPSB and 3HPSB, respectively) on the JAK2/STAT3 pathway. METHODS AND RESULTS: In vitro experiments with the OCCC cell line TOV21G and a xenograft nude mouse model are used to achieve the study aims. The results showed that 3HPSB has the greatest anti-proliferative and pro-apoptotic effects of the three compounds studied. Activation of the JAK2/STAT3 pathway and the nuclear translocation of STAT3 are effectively inhibited by 3HPSB and PSB. Both 3HPSB and PSB can effectively suppress tumor growth, which is mediated by the inhibition of JAK2/STAT3 phosphorylation. CONCLUSION: This is the first study to compare the efficacy of PSB, 3HPSB, and the newly identified compound 2HPSB regarding ovarian cancer. Moreover, targeting JAK2/STAT3 is shown to be a potentially effective strategy for OCCC treatment. This study is expected to provide new insights into the potential of the abovementioned phytochemicals for development as adjuvants for cancer treatment in the future.


Assuntos
Carcinoma , Neoplasias Ovarianas , Feminino , Animais , Camundongos , Humanos , Janus Quinase 2/metabolismo , Janus Quinase 2/farmacologia , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fator de Transcrição STAT3/metabolismo , Proliferação de Células
17.
Microbiol Spectr ; 12(1): e0186823, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018983

RESUMO

IMPORTANCE: The link between gut microbiota and diet is crucial in the development of non-alcoholic steatohepatitis (NASH). This study underscores the essential role of a healthy diet in preventing and treating NASH by reversing obesity, lipidemia, and gut microbiota dysbiosis. Moreover, the supplementation of functional food or drug to the diet can provide additional advantages by inhibiting hepatic inflammation through the modulation of the hepatic inflammasome signaling pathway and partially mediating the gut microbiota and lipopolysaccharide signaling pathway. This study highlights the importance of adopting healthy dietary habits in treating NASH and proposes that supplementing with ginger essential oil or obeticholic acid may offer additional benefits. Nonetheless, further clinical studies are necessary to validate these findings.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Dieta Saudável , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo
18.
J Agric Food Chem ; 72(1): 657-669, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109376

RESUMO

Amadori rearrangement products (ARPs), as intermediates of the Maillard reaction (MR), are potential natural flavor additives but there is a lack of investigation especially in oligopeptide-ARPs. This study for the first time conducted a systematic analysis in comparing ARPs of glycine, diglycine, triglycine, and glucose to corresponding classic MR systems, including production, stability, and flavor analysis. The ARPs were effectively produced by prelyophilization with heating at 70 °C for 60 min and purified to 96% by a two-step purification method. Correlated with the stability order of amino compounds (glycine > diglycine > triglycine), the stability order of ARPs was Gly-ARP > Digly-ARP ≈ Trigly-ARP. In a negative correlation with heating temperature and time, ARPs were less stable than original amino compounds at high temperatures (100, 130, and 160 °C). ARPs exhibited better flavor formation ability in pyrazines and furans than MR systems, with similar flavor compositions but different preferences. Diglycine- and triglycine-ARPs exhibited better flavor formation efficiency than glycine-ARP. Heating temperature and time, initial pH, and carbon chain length were found to be the parameters that affect the stability and flavor formation of ARPs. This study suggested that ARPs, especially peptide-ARPs, have great potential for usage as food flavor additives in the future.


Assuntos
Glicina , Glicilglicina , Glicina/química , Aditivos Alimentares , Aromatizantes/química , Glucose/química , Estudos de Viabilidade , Oligopeptídeos , Reação de Maillard
19.
J Agric Food Chem ; 72(1): 647-656, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38115213

RESUMO

Until now, no effective method has been found to monitor the Maillard reaction process for complex protein hydrolysates. Dynamic changes in the concentration of α-dicarbonyl compounds, fluorescence intensity, and browning degree were investigated during the Maillard reaction of corn protein hydrolysates. When the fluorescence intensity reached the peak, deoxyosones would continue to be increased by ARP's degradation. However, the reaction node with the highest fluorescence intensity coincided with the turning point of the browning reaction, and the subsequent browning rate remarkably increased. Therefore, the change in fluorescence intensity could be used to monitor the degradation of ARP and the formation of browning melanoidin at different stages of the Maillard reaction of complex systems, thus effectively indicating the process of the Maillard reaction. When Maillard reaction intermediates (MRIs) with maximum fluorescent compounds were heated, the most abundant pyrazines were subsequently achieved. However, furan compounds would be progressively increased during the thermal process of MRIs with continuously enhanced browning.


Assuntos
Reação de Maillard , Xilose , Zea mays , Hidrolisados de Proteína , Temperatura Alta
20.
mBio ; 15(2): e0275223, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38126747

RESUMO

Gut microbiota dysbiosis is causally related to inflammatory bowel disease (IBD), and increased levels of the gut metabolite ammonia have been proposed to contribute to IBD development. In this study, we aimed to clarify the anti-colitis mechanism of gallic acid (GA) based on its ability to trap the deleterious metabolite ammonia and improve gut microbiota. Aminated product was detected in the fecal samples of mice after oral gavage of gallic acid (GA) and identified as 4-amino-substituted gallic acid (4-NH2-GA), thus confirming the ability of GA to trap ammonia in vivo. Then, we compared the beneficial effects of GA and 4-NH2-GA on dextran sulfate sodium (DSS)-induced colitis mouse and found that both compounds managed to alleviate colitis phenotypes, indicating ammonia trapping had no adverse effect on the original anti-colitis activity of GA. In addition, both GA and 4-NH2-GA improved the gut microbiota dysbiosis induced by DSS, and fecal microbiota transplantation was subsequently performed, which further revealed that the gut microbiota mediated the anti-colitis activity of both GA and 4-NH2-GA. In summary, this study clarified that GA alleviated colitis by targeting both the symptoms and root causes: it directly reduced the deleterious metabolite ammonia by forming aminated metabolites without compromising the original anti-colitis activity, and it also improved gut microbiota dysbiosis, which in turn contributed to the alleviation of colitis. Since the GA structure is presented in various polyphenols as a common building block, the novel anti-colitis mechanism obtained from GA may also apply to other complex polyphenols.IMPORTANCEThe dysbiosis of the gut microbiota and its metabolism directly cause the emergence of IBD. In this study, we aimed to clarify the anti-colitis mechanism of GA in sight of gut microbiota and its metabolite ammonia. We discovered that GA directly captured and reduced the harmful metabolite ammonia in vivo to produce the aminated metabolite 4-NH2-GA, while the amination of GA had no adverse effect on its initial anti-colitis activity. In addition, both GA and its aminated metabolite improved the gut microbiota in colitis mice, and the modified gut microbiota, in turn, helped to relieve colitis. Since the GA structure is presented in diverse polyphenols as a common building block, the novel anti-colitis mechanism targeting the symptoms and root causes might also apply to other complex polyphenols.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Camundongos , Animais , Amônia , Disbiose , Ácido Gálico/efeitos adversos , Colite/induzido quimicamente , Aminoácidos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...